Under the Radar: Determinants of Honesty in an Online Labor Market

[Work in progress: Do Not Cite]

Winter Mason
Siddharth Suri
Daniel G. Goldstein

Honesty in AMT

- Expected (or at least desired) of workers
- Expected of requesters
- But when do people deviate from honest behavior?
- Will vary
- What can be gained by cheating
- How many lies one must tell for that gain

Experimental Paradigm

- Recruit turkers. Same base pay to avoid selection
- Ask participants about demographics
- Sex, Age, Country, Income, Education
- Ask participants to privately roll a die (or dice) and report outcome to determine payout
* borrowed from Fischbacher \& Heusi

Three studies

1. Baseline: comparison with prior work

- One die, $\$ 0.25+\$ 0.25$ / pip
- [\$0.50, \$1.75], E=\$1.125
- Average cheater gain would be $\$.63$ (max cheater, that is)
- N=176 (93 US, 83 India)

Honest Baseline Payouts

Three studies

1. Low Variance: less to be gained by dishonesty

- One die, $\$ 1.00+\$ 0.05$ / pip
- [\$1.05, \$1.30], E=\$1.175
- Average cheater gain would be $\$.13$
- N=267 (140 US, 127 India)

Honest Low Variance Payouts

Three studies

3. Thirty rolls: more chances to lie (and be caught)

- Thirty dice, $\$ 0.25+\$ 0.01$ / pip
- [\$0.55, \$2.05], E=\$1.30
- Average cheater gain would be $\$.75$
- $\quad \mathrm{N}=233$ (108 US, 125 India)

Honest Thirty Roll Payouts

Baseline

- Average reported roll significantly higher than expected
- $\mathrm{M}=3.91, p<0.0005$
- Similar to Fischbacher \& Huesi

Conclusion thus far

- People are cheating when they can make as much as $\$.63$ on average by doing so.

Low Variance

- Average reported roll significantly higher than expected
$-\mathrm{M}=3.77, p<0.01$
- Same (no sig difference in distribution) as before

Conclusion thus far

- People cheat just as much when they can only make $\$.13$ on average by doing so

Thirty rolls

- Average reported roll much closer to expected (still sig. diff)
$-\mathrm{M}=3.57, p<0.0005$

Thirty rolls

- Overall, much less dishonesty
- Only 3 of 232 participants reported significantly unlikely outcomes
- Only 1 participant was fully income maximizing (all sixes)

Conclusion thus far

- People don't cheat very often when given multiple opportunities

How does dishonesty decrease as a function of opportunities to cheat

- Random assignment to roll 1, 2, 4, 5, 10, or 20 times ($\mathrm{n}=100$ per condition)
- Average, min, max payout the same in all conds:
- 1 roll condition, 20 cents per pip
- 2 roll condition, 10 cents per pip
-4 roll condition, 5 cents per pip
- 5 roll condition, 4 cents per pip
- 10 roll condition, 2 cents per pip
- 20 roll condition, 1 cent per pip

Distribution of rolls as number of rolls increases

Average roll as a function of rolls

Conclusion thus far

- People lie a relatively high proportion of the time when they have few opportunities, but a lower proportion when they have more opportunities
- A simple way to get the average response "more honest" is to break it over many tasks within one participant
- Average roll is 4.2 in 1 roll condition vs.
-3.57 in 30 roll condition

Moderators

Fear of detection and punishment

- Making Turkers very aware that their work would be accepted no matter what increased dishonesty (one roll mean 4.2-4.3 here, 3.9 in previous study)

Honesty and Qualifications

- In 30-roll study, work was broken in to 10 HITs
- 5 qualification levels
- India \& U.S.
- No significant differences across means

Qualification	U.S.A.	India
$0-89 \%$	3.71	3.48
$90-94 \%$	3.57	3.56
$95-97 \%$	3.60	3.65
$98-99 \%$	3.63	3.55
100%	3.46	3.54

Honesty and Qualifications

- In 30-roll study, work was broken in to 10 HITs
- 5 qualification levels
- India \& U.S.
- No significant differences across means
- Only two differed from fair mean

Qualification	U.S.A.	India
$0-89 \%$	3.71	3.48
$90-94 \%$	3.57	3.56
$95-97 \%$	3.60	3.65
$98-99 \%$	3.63	3.55
100%	3.46	3.54

Honesty and Demographics

- Fit model using all collected demographics to predict average roll in baseline study and 30roll study
- Looked at education, race, income, age, sex
- No demographic difference significantly predicted deviation from fair outcome

Ongoing work

- Why does honesty increase with the number of rolls?
- Afraid of detection \& punishment
- Telling multiple lies feels worse

Thank you!

